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Pull-out of a ductile fibre from a brittle matrix 
Part l Shear lag mode/ 

CHUN-HWAY HSUEH 
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 

Pull-out of a ductile fibre from a brittle matrix has been analysed using a shear lag model. 
Debonding at the fibre-matrix interface and yielding of the fibre occurred during the pull-out 
process. Both Poisson's contraction of the fibre and Coulomb friction of the debonded interface 
were considered. The debond length, which consists of an elastic zone length and a plastic zone 
length, was also analysed. When the fibre has a finite embedded length, it was found that necking 
prior to full pull-out of the fibre was required to optimize the toughening of a brittle matrix due to 
plastic deformation of the fibres. The essential material properties to achieve this are addressed. 

1. Introduction 
Brittle solids can be toughened by incorporating duc- 
tile inclusions. These inclusions can be particles [1-5], 
plates [6-9], or fibres [10-15]. Toughening of the 
brittle matrix is due to bridging of the crack surfaces 
by the ductile inclusions, and the toughening behavi- 
our of the composite depends on the stress-displace- 
ment relation of the bridging inclusions. The present 
study was limited to fibres as the inclusions. In the 
presence of bonding at the fibre-matrix interface, the 
fibre is constrained and its stress-displacement curve 
is different from that of an unconstrained fibre [-5, 10, 
15]. Generally, the interface should not be very strong 
for optimum toughening. Strong (interfacial) bonding 
would result in a high degree of geometric constraint 
for the fibre, and the crack opening displacement 
corresponding to the fibre rupture would be very 
small which, in turn, results in a decrease in the 
toughening effect [-5, 6, 9]. For long (or continuous) 
fibres, optimum toughening requires weak interfaces 
which result in extensive interfacial debonding to re- 
move the constraint and to allow fibres to neck over 
extensive lengths until fracture [5, 9, 12]. However, 
when the fibre has a finite length, a critical minimum 
interfacial bond strength is required for optimum 
toughening. Otherwise, the fibre would be fully pulled 
out of the matrix before it necks which, in turn, minim- 
izes both the crack-surface bridging action and the 
toughening effect [5, 9]. 

To analyse toughening of a brittle matrix by fibres, 
a single-fibre pull-out (i.e. the shear lag [16]) model 
has been adopted. When the fibre is brittle, the pull- 
out problem has been analysed extensively [17-25]. 
However, there exist only a few analyses for ductile 
fibres [9, 10, 12, 26]. The purpose of the present study 
was to extend the shear lag model to ductile fibre. 
Interfacial bonding, Coulomb friction at the debonded 
interface, and Poisson's contraction as well as elas- 
tic/plastic deformation of the fibre are considered in 
the present paper. First, the debond length, which 
consists of an elastic and a plastic zone lengths, during 
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the pull-out process is analysed. Second, the distribu- 
tions of the fibre axial stress and the interfacial shear 
stress along the debond length are presented. Third, 
effects of the interfacial bond strength, yield stress and  
strain-hardening rate of the (unconstrained) fibre, 
frictional coefficient and residual clamping stress at 
the debonded interface, and Young's modulus of the 
matrix on the (elastic/plastic) debond length are 
shown. Finally, for a finite fibre length, conditions of 
necking prior to pull-out of the fibre for optimum 
toughening are discussed. 

2. The shear lag model 
The shear lag model is depicted in Fig. 1. A ductile 
fibre with a radius, a, is embedded in a coaxial cylin- 
drical shell of a brittle matrix with an outer radius, b. 
The radial and the axial coordinates are r and z, 
respectively. The fibre is subjected to an applied axial 
stress, % ,  at the loaded surface, z = h, and the stress 
transfers from the fibre to the matrix through the 
interfacial shear stress, zi. In the present analysis, the 
following two conditions are assumed. (1) Interfacial 
debonding occurs prior to fibre yielding which is 
a premise for maximizing the toughening effect. (2) 
The interface is subjected to a residual clamping stress, 
~c, which, in turn, results in Coulomb friction upon 
interfacial debonding. This residual clamping can re- 
sult from processing (i.e. densification shrinkage of the 
ceramic matrix against the already dense fibre), ther- 
momechanical mismatch between the fibre and the 
matrix during cooling from the fabrication temper- 
ature, or the asperities along the interface. In the 
presence of interfacial asperities, an interfacial com- 
pressive stress is induced as the fibre attempts to slide 
past the matrix [12, 23, 27-29]. 

Fig. 1 shows that (1) the interface debonds along 
a length, h, such that the end of the debond zone is 
located at z = 0, (2) the fibre yields along a length, 
h - by ,  such that the end of the plastic zone is located 
at z -- by, and (3) at the end of the debond zone, the 
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Figure 1 Schematic illustration of the shear-lag model used in 
analysing pull-out of a ductile fibre from a brittle matrix. The 
debond length, h, which consists of an elastic and a plastic zone 
lengths (by and h - by), is also shown. 

axial stress in the fibre is in equilibrium with the bond 
strength, O-O. This bond strength can be related to the 
interfacial shear strength or the interracial fracture 
energy depending on whether the strength-based [17, 
18, 25] or the energy-based [21, 30, 31] debonding 
criterion is used. With given material properties, both 
h and hy a r e  functions of O-o. 

For the shear lag model, the differential equation 
governing the axial stress distribution in the fibre, O-r, 
during fibre pull-out has been derived, such that [25] 

d20-f  E~176176 + 
+ ~- a 2 j  (1) ] 

where Vm is Poisson's ratio of the matrix, and O-a is the 
axial stress in the matrix at r = a. The solution of O-f is 
contingent upon the determination of O-,. Depending 
upon the characteristic of the interface (i.e. bonded or 
debonded) and the mechanical behaviour of the ma- 
terial (i.e. elastic or plastic), O-a can be determined 
accordingly. For a bonded interface, the solutions 
have been obtained previously when the fibre remains 
elastic [24, 25]. Interracial debonding prior to fibre 
yielding is considered in the present study. The solu- 
tions after debonding and prior to yielding are pres- 
ented in Section 3, and the solutions after yielding and 
prior to necking are presented in Section 4. After neck- 
ing, the strain is restricted to the necked region, the 
stress-strain curve of the fibre depends on the cavita- 
tion process in the necked region and is beyond the 
scope of the present study. 
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3. Elastic solutions (prior to yielding) 
When the fibre remains elastic during the pull-out 
process, the solutions have been obtained previously 
[24]. However, a deficiency exists in the existing solu- 
tions, i.e. the shear stress at r = b satisfies the free 
surface condition only approximately [24]. Modifica- 
tions of the analyses to satisfy this free surface condi- 
tion have been addressed [25]. Without repeating the 
analyses, the solutions, which satisfy the free surface 
condition at r = b, are listed in the present study. 

The relation between the applied stress and the 
sliding length (i.e. O-o versus h) is given by Equation A3 
in [32]. The fibre axial stress, O-f, and the interfacial 
shear stress, xi, along the sliding length are given by 
Equations 8 and A19 in [33]. However, to satisfy the 
free surface condition at r = b, the parameters A1, A2,  

and A3 in the above equations should be replaced by 

b 4 
2pVm(1 + Vm) [ ~  In ( ! )  

3b  2 - 

(2a) 

A2 : I (  1 b2~ gmVf 
- - a Z / E f v  m - -  1 ] /  

b 4 
~ a21 (2b) 

A3=[--o-o--(  1-b2~DO-e]/a2f v m J /  

(!) 3  -a21 (1 + Vm) ~ In ~ (2c) 

where E and v are Young's modulus and Poisson's 
ratio, the subscripts f and m denote the fibre and the 
matrix, ~t is the coefficient of friction at the interface 
and D is given by 

b 2 + a  2 Era(1 - v f )  
D - b E . a 2 + Vm "~- Ef  (3) 

4. Elastic/plastic solutions 
(after yielding) 

During the pull-out process, an interfacial radial 
stress, O-p, is induced due to Poisson's effect. For 
a frictional interface, the axial stresses in the fibre and 
the matrix, O-f and O-m, vary slowly over distances 
comparable to the fibre radius. In this case, the radial 
and the tangential stresses, cyr and O-0, can be related to 
O-p by [21, 32] 

O-fr ~ fifo 

= O-p (4) 

for the fibre, and [21, 32] 

O'mr = O-p at r = a (5a) 

-- (b 2 + a 2) cyp 
O-toO = b2 _ a2 at r = a (5b) 

for the matrix at the interface. 



The stress transfer from the fibre to the matrix, and 
the Coulomb friction at the interface are dictated by 

dof 21; i 
- ( 6 )  

dz a 

Ti : ~ ( o - c  -t- O'p). (7)  

The condition that the fibre and the matrix remain in 
contact during frictional sliding requires continuity of 
the tangential strain at the interface. Depending upon 
the mechanical behaviour of the fibre (i.e. plastic or 
elastic), the corresponding analyses are performed, 
respectively, in Sections 4.1 and 4.2. 

4.1. The plastic zone (h >~ z ~> hy) 
With the residual clamping stress, eye, and the induced 
interfacial radial stress, o-p, due to Poisson's effect, the 
radial constraint of the fibre is eye + o-p. Using the Von 
Mises yield criterion [34], assuming the plastic strain 
satisfying the Prandtl-Reuss relation [341, and as- 
suming linear strain-hardening, the plastic strains 
~P, a~ and a~ in the fibre are (see Equations 5-12 in 
[35]) 

= o-f - -  O-C - -  o-p - -  o-y ( 8 a )  

H 

= 

_ _ o - f -  o-c - o-p - o-y ( 8 b )  

2H 

where H is the slope of the strain-hardening curve, and 
% is the yield stress of the unconstrained fibre. Hence, 
the yield stress of the constrained fibre, which is 
subjected to triaxial stresses, becomes o-e + Op + o-y. 

The fibre/matrix system subjected to the residual 
stress is in mechanical equilibrium prior to loading. 
During loading, continuity of the tangential strain at 
the interface requires 

(1 - -  Vf) o-p - -  Vfo-f o-f - -  O" e - -  o-p - -  O'y 

Ef 2H 

= - -  ~ - - ~  + V m o-p - -  Vmo- a E m (9)  

Combination of Equations 6, 7 and 9 yields 

l f a ( D  Era)d~ (Emvf Era) 
o-a = Vmmk \ N + \  Ef o-̀  

E m o - y ~  
+ Do~ ~ j (10) 

Substitution of o-a into Equation 1 yields 

d 2 o - f  d o - f  
dz ~ + B1 ~-z  + BE~ = B3 (11) 

where 

B I =  a ( 1 -  b~)(D+~)/2t'tvm(l+vm)az/\ 

V b 4 a 2 3 2- ] • [ _ ~, J ( 1 2 a )  

B2 = I(1 + 1 )  l l / a 2 j  Vm 
b* 

( 1 +  Vm) I ~ - ~ _  a2 In ( ! )  3 b 2 -  a21 (12b) 

B a =  - -o-o--  1 -  2 5 1 - - 1 D ~  
a / V m \  2H / J /  

b 4 
(1 + Vm) [ ~ _ _  azln ( ! )  3 b 2 -  ~- aa I (12c) 

The solution of o-f is subjected to the following two 
boundary conditions. First, the axial stress in the fibre 
is in equilibrium with the applied stress at the loaded 
surface, such that 

cyf = o-o a t z = h  (13a) 

Second, the plastic strain is zero at the end of the 
plastic zone, such that 

of = o-e + O-P + O-y at z = hy (13b) 

The solution of Equation 11 subjected to the above 
boundary conditions is 

B3 {1 - exp [n2 (z - h)] } + C {exp (nl z) 
o - f =  B 2  

- exp [nlh + n2(z - h)]} + o-oexp[n2(z - h)] 

(14) 

where 

g~ = [ o - y -  [1 + (anz/21a)] exp In2 (hy - -  h)] o-o 

- (B3/B2){1-[1 + (an2/2g)]exp[n2(hy - h)] }]/ 

{1 + (anl/2g)]exp(nlhy) - [(1 + (an2/21a)] 

x exp [nlh + n2(hy - h ) ] }  (15a) 

- B1 + (B 2 - 4B2) u2 
nl = 2 (15b) 

- B1 - (B 2 - 4B2) 1/z 
n2 = 2 (15c) 

The corresponding interfacial shear stress can be ob- 
tained from Equations 6 and 14. 

The complete solutions are contingent upon the 
solutions of both h and hy. These can be achieved by 
satisfying (1) continuity conditions at the elastic/plas- 
tic boundary (i.e. at z = hy), and (2) the free surface 
condition for the matrix at z = h. While the first con- 
dition requires the solutions in the elastic zone (which 
will be solved in Section 4.2), the second condition 
leads to 

) + (n, - 

} x exp[(nx + n2)(h - hy)]o-y + Do-e ~ ] /  

~ - ) e x p  [n,(h - hy)] 

an i vf 1 
- n 2 ( l + ~ g ) e x p [ n 2 ( h - h y ) ] } - E m ( - ~ f + ~ ) ]  

(16) 
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where 

p , = ~ g a  ( D +  2 ~ ) / [ ( I +  ~g-g//an')exp[nz(h-hy)] 

- ( 1  +an2\ hy)]] (17a) -~p )exp [n, (h - 

Pz = t--(n1 - nz)exp [(nl + n2)(h - hy)] 

+ n l ( 1  + ~ff~)exp [nl (h - hy)] 

~)exp[nz(h - 

~mm \ ~ +  ~ ) - 1 ]  (17b) 

4.2. The elastic zone (hy ~> z/> O) 
Without the plastic strain component in Equation 9, 
Oa becomes 

a do'f "~ EmvfO'f ] 
O" a - -  

Substitution of o a into Equation 1 yields 

d 2 of dof 
8Z 2 + A1 ~-2 + Az~ = A3 (19) 

where A1, A2, and A3 are given by Equations 2a-c. 
The solution of of is subjected to the following two 
boundary conditions. First, the axial stress in the fibre Q1 = 
is in equilibrium with the bond strength at the end of 
the debond zone, such that 

of = Od at z = 0 (20a) 

Second, of is continuous at z = hy, such that 

of = oc + op + Oy at Z = hy (20b) 

The solution of Equation 19 subjected to the above R2 = 
boundary conditions is 

A3 
of = A2 [1 - -  exp(m2z)] + B[exp(mlz) - -  exp(m2z)] 

+ odexp(m2z) (21) R1 = 

where 

( om25 B = Oy- 1 + -~g)exp(m2hy)Od 

A2A3[1-(l+~)exp(mzhy)l}/ 

[(l+am~exp(mlhy)-( + ~g2)exp(m2/Y) 1 

(22a) 

- At + (A 2 -- 4A2) 1/2 
(22b) 

m l  ~ 2 

-- A1 -- (A 2 -- 4A2) 1/2 (22c) 
m2 = 2 

The corresponding interfacial shear stress can be ob- 
tained from Equations 6 and 21. 

The complete solution of of (Equation 21) is contin- 
gent upon the solution of hy, which is solved as fol- 
lows. Continuities of the axial stress in the matrix and 
of the interracial shear stress at z = hy are required. It 
was found that these continuity conditions are fulfilled 
by continuity of o,  at z = hy. Equating Equation 10 to 
Equation 18 at z = hy, the result is 

O 0 = 1 -- a2/  Vm 

-}-[R2--Q2-I-QI--~)Q~IEm~ 
2VmHJ Oy 

am2 / +[m2-R2(l+ ~-p)]exp(m2hy)Od}/ 

{Qx-RI+[n2-Qz(1 + anE~]2g j j  

x exp [nz(hy - h)]} (23) 

where 

Qz = {nlexp [n2(h - hy)] - nzexp [nl(h -- hy)]} / 
/ 

~y-.. j exp  [ne(h - hy)] - 

) 
x exp [nl(h - hy)]~ (24a) 

(n2+Q2{exp[n2(h-hy)]-(l+ ~p)})/ 

{ I (1  - b2~Em vf + 1 I I  

x exp [n2(h - hy)]} (24b) 

l/I( amt'] [rnlexp(mlhy)- m2exp(mzhy)] 1 + 2p ] 

 exp,m hy, q 

{m2exp(m2hy)+R211-(1+ am2"]2g ] 

X e x p ( m z h y ) l } / [ ( 1 - b 2 )  E mvfa2  / EfVm - - 1 ]  (24d) 

For a given G0, solutions of h and hy can be obtained 
by satisfying Equations 16 and 23 simultaneously, 
which require numerical analyses. 

5. Results 
The properties of W-3Re fibre-reinforced TiTaAI 
composites [151 are used for the present analyses. The 
reported properties are Ef = 350 GPa, Em = 190 GPa, 
vf=0.28,  Vm=0.23, Oy= 1.9GPa, O d = 8 0 M P a ,  
a = 37.5 gm, and the volume fraction of fibres is 0.16 
[15]. The thermal expansion coefficients are 
~f = 4.5x 10-6K -1 and~m = 10x 10-6 K - l ,  and the 
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cooling temperature is - 1180 K [15]. Assuming that 
the residual interracial clamping stress, o~, is due to 
thermal mismatch during cooling, the calculated cr~ 
using the analyses in [36] is - 8 2 3 . 5  MPa. In the 
shear lag model, the material surrounding the fibre is 
treated as the matrix. Owing to the high volume 
fraction of fibres, the rule of mixtures is used to esti- 
mate the elastic properties for the matrix (i.e. 
Em= 215.6 GPa, Vm ---- 0.238) in the shear lag model. 
It was found that the calculated results are insensitive 
to b/a when b/a >~ 10. Hence, b/a = 10 is used in the 
present calculation. 

Unless noted otherwise, the above properties, 
g = 0.2, and H = 250 GPa  are used in the present 
calculation to elucidate the essential trends. First, an 
example of determining the debond length, h, and the 
plastic zone length, h - hy, during the pull-out process 
is illustrated. Second, an example of distributions of 
the axial stress in the fibre and the interracial shear 
stress along the debond length is given. Third, the 
effects of crd, Cry, H, p, cry, and Em on both h and h - hy 

are examined. Finally, when the embedded fibre 
length is finite, the conditions for necking prior to 
pull-out of the fibre are presented. 

5.1. Determination of thedebond length and 
the plastic zone length 

Interracial debonding initiates when the applied stress, 
cro, reaches the interfacial bond strength, era, The 
debond length increases without plastic deformation 
of the fibre with increasing cr0 until cr0 reaches 
cr~ + crp + cry, where crp is a function of cro- At this 
point, plastic deformation develops, and both the deb- 
ond length and the plastic zone length increase with 
increasing cro which are determined as follows. 

In the absence of plastic deformation, the closed- 
form analytical solution for the applied stress-debond 
length relation is given in Section 3. Plotting both cro 
and cro + crp + cry versus the debond length curves, 
the applied stress and the debond length at which 
plastic deformation initiates can be obtained from the 
intersection of these two curves (Fig. 2). Compared to 
the yield stress of the unconstrained fibre (i.e. 
1.9 GPa), the calculated yield stress of the constrained 
fibre is 0.7 GPa  lower (i.e. 1.2 GPa) which is in good 
agreement with the measurement ( ~  1.3 GPa  [15]). 
This decrease of the tensile yield stress for the con- 
strained fibre was earlier interpreted to be a result of 
the existence of the residual tensile axial stress in the 
matrix in [15]. In the present study, this decrease is 
due to the fact that the constrained fibre is subjected 
to triaxial stresses, in which a strong interracial resid- 
ual clamping contributes to this decrease. 

In the presence of plastic deformation, the debond 
length, h, consists of an elastic zone length, hy, and 
a plastic zone length, h - hy (see Fig. 1). During the 
pull-out process, h increases; however, it was found in 
the present calculation that the elastic zone length, hy, 

shows a slight decrease after yielding. This slight de- 
crease in hy is due to the change in crm at z = hy during 
the pull-out process. For a fixed by, which is slightly 
smaller than the debond length at which plastic defor- 

1 . 5  . . . .  i . . . .  i . . . .  [ . . . .  I , , , 

(Jc  + 

'~ 
( : 3  ; ~ o  ~ I 

v ~ r f Debond  length a ty ie ld ing 

0.5 

0 . 0  [ . . . .  I . . . .  I . . . .  I . . . .  I . . . .  _ J  

0 1 2 3 4 5 

Normal ized debond  length, h/a 

Figure 2 The ~o and ~ + % + Cyy versus the normalized debond 
length h/a relations for determining the applied stress and the 
debond length at which yielding occurs. 

mation initiates, the cr0 versus h - hy curves are plot- 
ted using Equation 16 and 23, respectively. While 
equation 16 is a function of h - hy and is independent 
of hy, Equation 23 is a function of both h - hy and hy. 

For a given hy, the applied stress, the plastic zone 
length, and the debond length can be obtained from 
intersection of these two curves (Fig. 3a). This process 
is repeated for different values of hy (see Fig. 3a), and 
both the debond length and the plastic zone length 
versus the applied stress relations are obtained as 
shown in Fig. 3b. The debond length versus the ap- 
plied stress relation prior to yielding is also shown 
(Fig. 3b). After yielding, the slight decrease in hy dur- 
ing pull-out can be seen in Fig. 3a. For example, when 
cro increases from ~ 2.1 GPa  to ~ 2.35 GPa, hy/a 
decreases from 3.727 to 3.724 while (h-hy)/a in- 
creases from ~ 4 to ~ 5.6. 

5.2. The stress distribution 
The distributions of the axial stress in the fibre, crf, and 
the interracial shear stress, q, along the debond length 
are shown in Fig. 4 for cro--2.038 GPa. The axial 
stress in the fibre is the applied stress at the loaded 
surface, and decreases non-linearly to the bond 
strength at the end of the debond length (z = 0). The 
interracial shear stress has the smallest magnitude at 
the loaded surface due to Poisson's effect. Both of and 
q are continuous at the elastic/plastic boundary 
(Z = hy). However, owing to the presence of plasticity 
in the plastic zone, the slope of the z l -  z curve 
changes at the elastic/plastic boundary. 

5.3. Effects of ~d, c~y, H, #, ~c, and E= 
The effects of the parameters, era, cry, H, g, crc, and Era,  

on the debond length, h, and the plastic zone length, 
h -  hy, are obtained by changing these parameters, 
arbitrarily, one at a time. It is noted that before yield- 
ing, the elastic zone length, hy, increases with increas- 
ing applied stress, cro. After yielding, hy shows a slight 
decrease with increasing cr0- This slight decrease in hy 
(hy decreases by ~ 0.03a when cro increases from 
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Figure 3 (a) For given elastic zone lengths, h y ,  the stress versus the 
plastic zone length (~o versus h - hy) relations are plotted based on 
Equations ( ) 16 and ( - - - )  23 to determine the plastic zone 
length. (b) The debond length, h, and the plastic zone length, 
h - -  hy, as functions of the applied stress. 

changed with increasing era (at the same cr0) (Fig. 5a). 
Fig. 5b shows that  the constrained fibre yields at 
a lower stress when the yield stress of the uncon-  
strained fibre, % ,  decreases. After yielding, both  the 
debond length and the plastic zone length increase, 
but the elastic zone length, hy, decreases with decreas- 
ing Cry (Fig. 5b). This decrease in hy i s due to the earlier 
development  of yielding with decreasing Cry which, in 
turn, limits the development  of  the elastic zone. When  
s train-hardening rate, H, decreases, the plastic zone 
length increases and the elastic zone length remains 
the same (Fig. 5c). 

When  the coefficient of friction, Ix, increases, both  
the elastic and the plastic zone lengths decrease 
(Fig. 5d) due to the increase in the frictional resistance 
at the debonded  interface. When  the magni tude  of the 
residual c lamping stress, crr decreases, both  the deb- 
end  length and the elastic zone length increase (due to 
the decreasing frictional resistance), and a l though 
yielding initiates at a higher stress, the plastic zone 
length increases when the load is sufficiently high (due 
to the decreasing frictional resistance) (Fig. 5e). This 
increase in the yield stress of the constrained fibre with 
the decreasing magni tude  of the residual c lamping 
stress is due to the constra ined fibre yielding at a 
stress of cr~ + crp + cry, where cr~ is negative (i.e. 
compressive). 

When  the Young 's  modulus  of  the matrix,  Em, is 
decreased, bo th  the debond  length and the elastic zone 
length decrease, and a l though yielding initiates at 
a lower stress, the plastic zone length decreases when 
the load is sufficiently high (Fig. 5f). The interracial 
radial stress induced due to Poisson's  effect, % (tensile 
and positive ), decreases with decreasing Em which, in 
turn, results in increasing frictional resistance and 
a decreasing yield stress for the constrained fibre. 

2.5t . . . .  , . . . . .  ' . . . . . . . .  . . . . .  , . . . . . . . .  -~0.17 

~'-.... Elastic zone - ~ Plastic zone i0.16 

 0.,4 
10.13 

 1.0- , 10.12 
' 01,  

" / ' ~ 0 . 1 0  = 

. . . . . . . . . . . .  0 ~  0.0 . . . .  , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 1 2 3 4 5 6 7 8 

Normalized axial position, z / a  

Figure 4 The axial stress in the fibre, crf, and the interfacial shear 
stress, - q ,  as functions of the normalized axial position, z/a, for 
% = 2.038 GPa. 

1.2 GPa ,  the yield stress of the constrained fibre, to 
2.5 G P a )  is ignored in the present  discussion. The 
effects of  these paramete rs  are shown in Fig. 5a-f ,  and 
are discussed as follows. 

Fig. 5a shows that  interfacial debonding occurs at 
a higher stress when the bond  strength, crd, increases. 
Both the debond  length and the elastic zone length 
decrease, but the plastic zone length remains un- 

5.4. The  c o n d i t i o n s  for  n e c k i n g  pr io r  to  
p u l l - o u t  o f  the  f ib re  

After yielding, an unconstra ined ductile fibre deforms 
with a uniform axial strain along the length. When  this 
uniform axial strain reaches a critical value, necking 
occurs and the load suppor t  capaci ty  of the fibre 
drops. The  uniform axial strain, ez, in the uncon- 

strained fibre is 

c r O  c r O  - -  O ' y  (25) 
~z = E~ + H 

Owing to the stress transfer between the fibre and the 
matrix,  a constrained fibre has a non-uni form axial 
strain distr ibution along the fibre length prior  to neck- 
ing. It  is assumed in the present  study that  necking of 
the constrained fibre occurs when the m a x i m u m  axial 
strain 8zo, which occurs at the loaded surface (z = h), 
in the fibre reaches a critical value. Considering the 
strain due to both  the loading and the residual c lamp- 
ing stress, ezo is 

(70 - 2vf(crc + Cyp) cro - -  c r c  - -  c r p  - -  O'y 
8zO = + Ef H 

at z = h (26) 
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Figure 5 Effects of(a) bond strength, c~d, (b) yield stress, c~y, (c) strain-hardening rate, H, (d) frictional coefficient, la, (e) residual clamping stress, 
c~c, and (f) Young's modulus of the matrix, E~,, on ( ) the debond length, h, and ( - - - )  the plastic zone length, h - hy. 

The reported ultimate strengths of the uncon- 
strained and constrained W-3Re  fibres are ~ 2.9 and 
~ 2.5 GPa,  respectively [15]. Using the material 

properties listed in Section 5, the calculated critical 
axial strains for the unconstrained (Equation 25) and 
the constrained (Equation 26) fibres are both ~ 1.2%. 
Hence, the adoption of H = 250 G P a  in the present 
calculation yields consistent results in the critical 
strain for necking between the unconstrained and the 
constrained fibres. The measured failure strain is 
~ 3% [15], but the measured critical strain for neck- 

ing is unavailable. However, if the measured critical 
strain and strain-hardening are available, the para- 

meters used in the present calculation can be adjusted 
accordingly. 

Assuming that the critical strain for necking is 
1.2%, the condition for necking requires that the max- 
imum axial strain in the fibre reaches 1.2% before the 
debond length reaches the end of the embedded fibre. 
When the fibre has a finite length, with other para- 
meters fixed, the requirements of the bond strength, 
Od, and the yield stress, ~y, for necking to occur are 
analysed, respectively, in this section. First, both the 
debond length and the plastic zone length are plotted 
as functions of the maximum axial strain in the fibre, 
~zo, at different values of the bond strength (Fig. 6a). 

4 7 9 9  
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Figure 6 (a) The ( ) debond length, h, and ( - - )  the plastic 
zone length, h - hy, as functions of the maximum axial strain at 
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and the plastic zone length, h - by, as functions of the bond strength, 
aa, when the critical axial strain for necking is 1.2%. 
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) The debond length, h, and ( - - - )  the plastic zone 
length, h - hy, as functions of the yield stress, ~y, when the critical 
axial strain for necking is 1.2%. 

Then, at ezo = 1.2%, both the debond length and the 
plastic zone length obtained from Fig. 6a are plotted 
as functions of the bond strength (Fig. 6b). Fig. 6b 
shows that the plastic zone length which develops 
prior to necking is independent of the bond strength; 
however, the debond length decreases with the in- 
creasing bond strength. Hence, for a given embedded 
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fibre length, necking of the fibre requires that the bond 
strength is greater than a critical value (Fig. 6b). 

Using the same procedure, the requirements of Cy 
for necking are plotted in Fig. 7. Prior to necking, the 
plastic zone length decreases and the debond length 
increases with increasing %. Hence, for a given em- 
bedded fibre length, necking of the fibre requires that 
the yield stress is smaller than a critical maximum 
value. However, ~y should also be greater than a criti- 
cal minimum value (,-~ 0.9 GPa in Fig. 7) to ensure 
that debonding occurs prior to yielding. It is noted 
that the debond length, h, decreases with increasing Cry 
at fixed ~o (Fig. 5b), but hjncreases with increasing Cry 
at fixed ~z0 (Fig. 7). This is due to ~zo reaching 1.2% at 
a higher ~o when t~y has a higher value. 

6. Conclusion 
Optimum toughening of a brittle matrix by ductile 
fibres requires that interracial debonding occurs be- 
fore yielding of the fibre during the fibre pull-out 
process. Furthermore, when the fibre has a finite em- 
bedded length, necking prior to its full pull-out is 
required. To examine the toughening condition, pull- 
out of a ductile fibre from a brittle matrix is analysed 
in the present study. When the fibre is constrained (i.e. 
embedded in matrix), the yield stress is modified due 
to the presence of triaxial stresses. Specifically, the 
tensile yield stress of a constrained fibre decreases 
when (1) the yield stress of the unconstrained fibre 
decreases, (2) the magnitude of the residual clamping 
stress increases, or (3) the Young's modulus of the 
matrix decreases. 

When the yield stress of a constrained fibre is 
greater than the bond strength, interracial debonding 
occurs during the pull-out process. The debond length 
increases with increasing applied stress until the fibre 
yields. Then with further loading, both the debond 
length (which consists of an elastic and a plastic zone 
lengths) and the plastic zone length increase; however, 
the elastic zone length shows a negligible decrease. 
When the maximum axial strain, which occurs at the 
loaded surface, in the fibre reaches a critical value, 
necking initiates. However, when the fibre has a finite 
embedded length, the maximum axial strain should 
reach the critical strain for necking before the debond 
length reaches the embedded length to ensure necking 
of the fibre. 

The effects of the bond strength, the yield stress, the 
strain-hardening rate, the frictional coefficient at the 
debonded interface, the residual clamping stress at the 
interface, and the Young's modulus of the matrix on 
the debond length, the plastic zone length, and the 
elastic zone length are examined in Fig. 5a-f. When 
the fibre has a finite embedded length, the plastic zone 
length should be maximized while the elastic zone 
length should be minimized during the pull-out pro- 
cess to utilize plastic deformation of the fibre as the 
toughening mechanism. Among the parameters dis- 
cussed in the present study, this is best achieved by 
having the bond strength smaller but close to the yield 
stress of the constrained fibre. 



The present analysis is applicable when the debon- 
ded interface is subjected to Coulomb friction. The 
present solutions offer the conditions for the interface 
to debond, and for the fibre to yield and to neck. After 
necking, the stress-strain relation of the fibre is com- 
plex and is beyond the scope of the present study. 
Also, to facilitate the analysis, the stress-strain curve 
of an unconstrained fibre is approximated by two 
straight lines (i.e. linear strain-hardening). To describe 
more realistic situations, more advanced studies will 
be needed. 
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